Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Mol Biosci ; 9: 976705, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2022800

RESUMEN

The antimicrobial resistance (AMR) crisis from bacterial pathogens is frequently emerging and rapidly disseminated during the sustained antimicrobial exposure in human-dominated communities, posing a compelling threat as one of the biggest challenges in humans. The frequent incidences of some common but untreatable infections unfold the public health catastrophe that antimicrobial-resistant pathogens have outpaced the available countermeasures, now explicitly amplified during the COVID-19 pandemic. Nowadays, biotechnology and machine learning advancements help create more fundamental knowledge of distinct spatiotemporal dynamics in AMR bacterial adaptation and evolutionary processes. Integrated with reliable diagnostic tools and powerful analytic approaches, a collaborative and systematic surveillance platform with high accuracy and predictability should be established and implemented, which is not just for an effective controlling strategy on AMR but also for protecting the longevity of valuable antimicrobials currently and in the future.

2.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1948166

RESUMEN

The coronavirus disease 2019 pandemic has alerted people of the threat caused by viruses. Vaccine is the most effective way to prevent the disease from spreading. The interaction between antibodies and antigens will clear the infectious organisms from the host. Identifying B-cell epitopes is critical in vaccine design, development of disease diagnostics and antibody production. However, traditional experimental methods to determine epitopes are time-consuming and expensive, and the predictive performance using the existing in silico methods is not satisfactory. This paper develops a general framework to predict variable-length linear B-cell epitopes specific for human-adapted viruses with machine learning approaches based on Protvec representation of peptides and physicochemical properties of amino acids. QR decomposition is incorporated during the embedding process that enables our models to handle variable-length sequences. Experimental results on large immune epitope datasets validate that our proposed model's performance is superior to the state-of-the-art methods in terms of AUROC (0.827) and AUPR (0.831) on the testing set. Moreover, sequence analysis also provides the results of the viral category for the corresponding predicted epitopes with high precision. Therefore, this framework is shown to reliably identify linear B-cell epitopes of human-adapted viruses given protein sequences and could provide assistance for potential future pandemics and epidemics.


Asunto(s)
COVID-19 , Virus , Aminoácidos , Mapeo Epitopo/métodos , Epítopos de Linfocito B , Humanos , Aprendizaje Automático , Péptidos/química
3.
Curr Genomics ; 22(8): 583-595, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1699391

RESUMEN

Background: A newly emerging novel coronavirus appeared and rapidly spread worldwide and World Health Organization declared a pandemic on March 11, 2020. The roles and characteristics of coronavirus have captured much attention due to its power of causing a wide variety of infectious diseases, from mild to severe, on humans. The detection of the lethality of human coronavirus is key to estimate the viral toxicity and provide perspectives for treatment. Methods: We developed an alignment-free framework that utilizes machine learning approaches for an ultra-fast and highly accurate prediction of the lethality of human-adapted coronavirus using genomic sequences. We performed extensive experiments through six different feature transformation and machine learning algorithms combining digital signal processing to identify the lethality of possible future novel coronaviruses using existing strains. Results: The results tested on SARS-CoV, MERS-CoV and SARS-CoV-2 datasets show an average 96.7% prediction accuracy. We also provide preliminary analysis validating the effectiveness of our models through other human coronaviruses. Our framework achieves high levels of prediction performance that is alignment-free and based on RNA sequences alone without genome annotations and specialized biological knowledge. Conclusion: The results demonstrate that, for any novel human coronavirus strains, this study can offer a reliable real-time estimation for its viral lethality.

4.
Nat Commun ; 13(1): 19, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1616981

RESUMEN

T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


Asunto(s)
COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , COVID-19/virología , Epítopos de Linfocito T/metabolismo , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Células Jurkat , Células K562 , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resonancia por Plasmón de Superficie/métodos
5.
PLoS Comput Biol ; 17(9): e1009380, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1398923

RESUMEN

The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.


Asunto(s)
Anticuerpos Antivirales , COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Sitios de Unión , Análisis por Conglomerados , Biología Computacional , Humanos , Modelos Moleculares , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Nucleic Acids Res ; 49(D1): D282-D287, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-744566

RESUMEN

SARS-CoV-2, the etiologic agent of COVID-19, exemplifies the general threat to global health posed by coronaviruses. The urgent need for effective vaccines and therapies is leading to a rapid rise in the number of high resolution structures of SARS-CoV-2 proteins that collectively reveal a map of virus vulnerabilities. To assist structure-based design of vaccines and therapeutics against SARS-CoV-2 and other coronaviruses, we have developed CoV3D, a database and resource for coronavirus protein structures, which is updated on a weekly basis. CoV3D provides users with comprehensive sets of structures of coronavirus proteins and their complexes with antibodies, receptors, and small molecules. Integrated molecular viewers allow users to visualize structures of the spike glycoprotein, which is the major target of neutralizing antibodies and vaccine design efforts, as well as sets of spike-antibody complexes, spike sequence variability, and known polymorphisms. In order to aid structure-based design and analysis of the spike glycoprotein, CoV3D permits visualization and download of spike structures with modeled N-glycosylation at known glycan sites, and contains structure-based classification of spike conformations, generated by unsupervised clustering. CoV3D can serve the research community as a centralized reference and resource for spike and other coronavirus protein structures, and is available at: https://cov3d.ibbr.umd.edu.


Asunto(s)
Biología Computacional , Coronavirus/metabolismo , Bases de Datos de Proteínas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Epidemias , Humanos , Internet , Modelos Moleculares , Estructura Terciaria de Proteína , SARS-CoV-2/química , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA